9th Annual Aging Aircraft Conference March 6-9, 2006

Developing, Fielding, and Sustaining America's Aerospace Force

Effects of Corrosion Inhibiting

Lubricants On Electronics

<u>Reliability</u>

POC: Mr. Scott Dotson Avionics Reliablity & Maintainability SME 752nd Combat Sustainment Group (CSG) 752nd Combat Sustainment Support Squadron (CSSS)

> Robins AFB, GA DSN 468-4863

Scott.Dotson@robins.af.mil

Integrity - Service - Excellence

Overview

Overview	
History	
Previous Studies Lab	
Flight	
Current DoD Efforts	
Potential Savings	
Conclusions	

> History

- Previous Air Force Studies
 - Conclusions -- Ground And Lab
 - > Conclusions Flight
- Current DoD Efforts
- > Potential Savings
- > Conclusions

History

Overview

History

Previous Studies Lab

Flight

Current DoD Efforts

Potential Savings

Conclusions

It is well known in theory and experience that thin, often invisible, insulating films can form on the surfaces of electrical connectors. These films/corrosion can be produced by the reactions of natural environments with the material systems used in commercial and military connectors. Such films may represent a significant source of problems such as False Alarms (FA), Cannot Duplicate (CND) and Retest Ok (RETOK).

History

Overview

History

Previous Studies Lab

Flight

Current DoD Efforts

Potential Savings

Conclusions

- Avionics/Connector Corrosion "Does Not Occur" Per much of the data in Air Force Databases
 - Can't be Seen (i.e. It Is Below Levels of Visual Detection)
 - Seldom if Ever Reported (i.e. No Data In REMIS by Related Codes)

Connector Corrosion Does Occur In Base Level Environments!!

AFI 10-602 Definitions

AFMC

•

History

Overview

Previous Studies

Lab

Flight

Current DoD Efforts

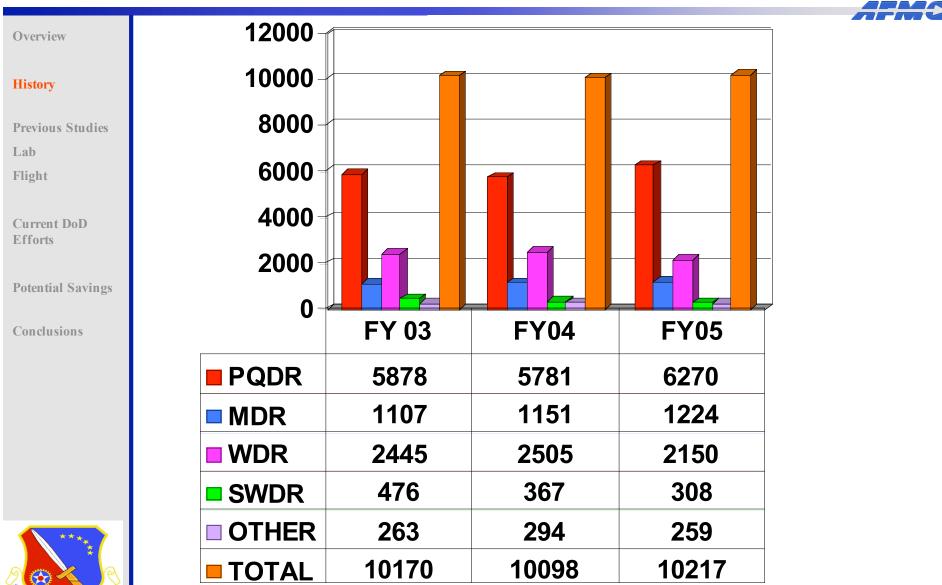
Potential Savings

Conclusions

False Alarm

A system-indicated malfunction that can't be validated because no request for corrective maintenance follows. A CND differs from a false alarm in that it signifies a malfunction that can't be confirmed

Cannot Duplicate


A situation that results in an operationally observed or recorded malfunction for a system or subsystem that onequipment maintenance personnel can't duplicate or confirm.

• Retest OK

A maintenance event involving a part or subsystem malfunction at the on-equipment maintenance level that personnel can't duplicate at the off-equipment maintenance level. As a result of this event, personnel may return the item to service without taking corrective action.

DRs FY03 – FY 05

Previous Studies

Overview

History

Previous Studies

Lab

Flight

Current DoD Efforts

Potential Savings

Conclusions

• Corrosion Preventive Compounds (CPC) Inhibit Corrosion To A Degree Which Makes Their Use Worthwhile

- Previous Studies Demonstrated that Connector Corrosion can be Prevented with CPC Lubricants
 - Inexpensive
 - No Risk
 - No Impact On Normal Ops

• Potential Cost Savings Throughout DOD May Be Large Due To <u>Exchange Cost Avoidance</u>

Previous Air Force Studies

Overview

History

Previous Studies

Lab

Flight

Current DoD Efforts

Potential Savings

Conclusions

- USAF Work Accomplished by <u>Battelle Labs</u> Contract Support
- Phase I -- Ground Based, Field/Lab Study (2 Years, 1996)
 - MIL-C-81309E (Navy) or MIL-L-87177A (Air Force)
- Phase II -- Flight Tests (2+ Years, 1997-1999)
 - Select 2 Lubricants; Specific LRUs; Lube I/O Connectors
 - F-16: about 150 Aircraft at 10 Locations
- Phase III Funded by PRAM (Feb 2001 Jul 2003) flight tests
 - How are the jets we treated several years ago doing?
 - F-15, HH-60, HH-65, C-141, WR Avionics Complex
 - Minimum of 45 LRUs in flight testing
 - •2 Lubricants (81309E and 87177A), 1 Type Per Base

"Phase I – Ground and Lab Studies" Typical Field Exposure Results On Test Connectors

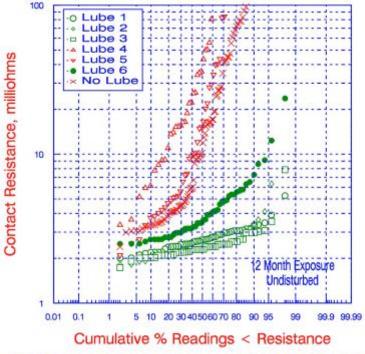
Overview

History

Previous Studies

Lab

Flight


Current DoD Efforts

Potential Savings

Conclusions

- Contact Resistance Change Distributions
- > 12 COTS CPCs Studied
- > Objective Is Smallest Change
 Possible (<10 milliohms)
- With No CPC, Failure Is Rapid
- Large Differences Among MIL Spec Lubes
- Few May Promote Corrosion
- Some Give Marginal Benefits
- The Best (2-3) Offer Excellent
- Corrosion Inhibition
- Objectives For Flight Tests Were
- Corrosion Inhibition
- Known Risk

CONTACT RESISTANCE OF AGED MATED, GOLD PLATED CONNECTORS AT SHELTERED SEACOAST EXPOSURE; EFFECTS OF LUBRICANTS (MIL 87177A AND 81309E)

"Phase I – Ground and Lab Studies" Laboratory Validation/Risk Evaluation

Overview

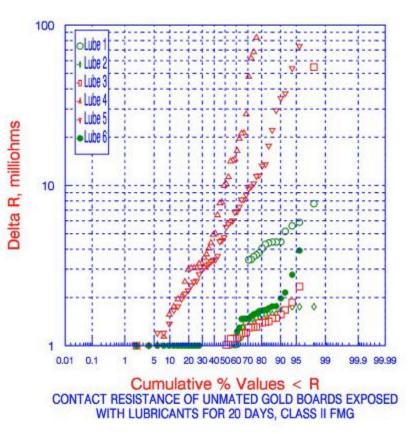
History

Previous Studies

Lab

Flight

Current DoD Efforts


Potential Savings

Conclusions

 Thermal Aging To Study Long Term Stability (80 C, 1000 Hrs)
 Corrosive Gas Exposure Of Unmated Connectors As Extreme Condition
 Combined Effects Shown

Lab Results Parallel Field

 2-3 COTS CPCs Will Survive Comprehensive Evaluation
 Best 2 Materials Selected For Flight Tests

ELECTRICAL CONNECTOR CPC WPAFB CPC VALIDATION STUDY

Overview

History

Previous Studies

Lab

Flight

Current DoD Efforts

Potential Savings

Conclusions

D5026NS 1 So-Sure 2. 3. Spray 706 4 ACF 50 CRC 3-6 5. **Super Corr B** 6. Stabilant 22 ** 7. NOX Rust 212 8 9. Omega 2775 * 10. Rust Preventive 11. Octoil 5068 12. Alox 2028C

	ZIP CHEM
	LHB Industries
*	Sprayon Products
**	Lear Chem Resrch
**	CRC Industries
L	lektro Tech, Inc
D	O.W. Electrochemicals
D	aubert Chemical
Fi	ine Organics
	Battenfield-American
	Octagon Process
	Alox Corp

81309 II 81309 III 81309 II 81309 II 81309 II 81309 II 87177A I,B NONE 81309 II 81309 II 81309 II 81309 II 81309 II EXCEL V GOOD Not Recom Not Recom EXCEL Not Recom Good Not Recom Good Not Recom

"Phase I" Conclusions -- Ground And Lab Study

- **Overview** Large Difference Among Lubricants In Performance History Only Very Few Lubricants Will Survive **Previous Studies Comprehensive Evaluation** Lab Flight • Present Qualification Specs Are Inadequate **Current DoD** Efforts • Best (2) Lubricants: MIL-C-81309E (Zip Chem D5026NS) and **Potential Savings** MIL-L-87177A (Lektro-Tech Super Corr B) Conclusions - Totally Suitable For Flight/Avionics (Tri-Service Manual) "Avionics Cleaning and Corrosion Prevention/Control"
 - NAVAIR 16-1-540 (Navy)
 - TO 1-1-689 (AF)
 - TM-1-1500-343-23 (Army)
 - Total Corrosion Inhibition
 - No Known Engineering Risk

"Phase II - F-16 Flight Tests; Treated LRUs"

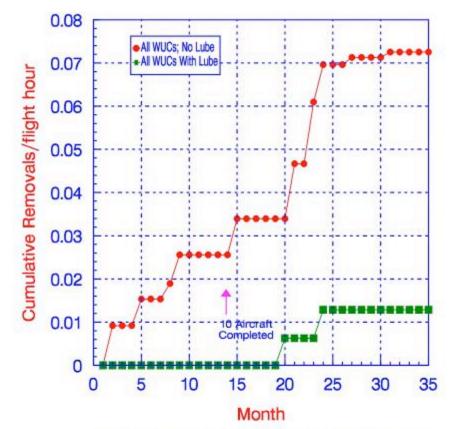
AFAG

Overview

History

Previous Studies

Lab


Flight

Current DoD Efforts

Potential Savings

Conclusions

- Weapons System LRUsTreated vs. Untreated
- Flight Line Applications
- Removals/Flight Hr.
- Positive Results
- Positive Base Feedback
- No Implementation Problems
- Minimal Labor

PPS (On Equipment) Data For Removals/Flight Hour; All Weapons System (WUC 75); Base A; With And Without Lube

"Phase II - F-16 Flight Tests; All Systems"

AFMG

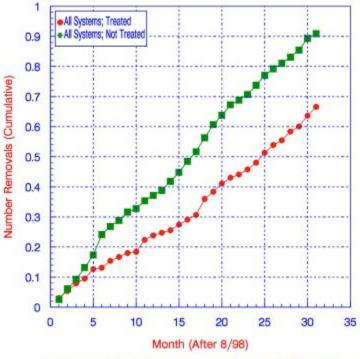
Overview

History

Previous Studies

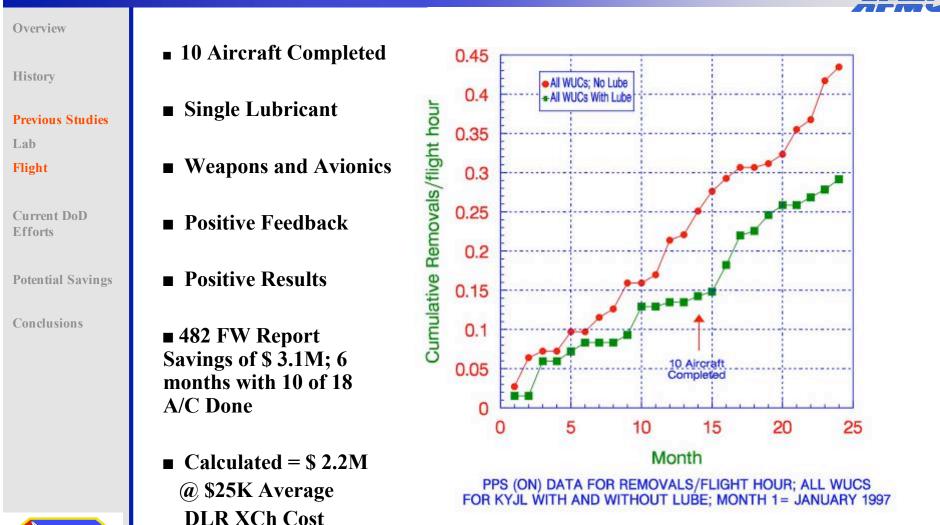
Lab

Flight


Current DoD Efforts

Potential Savings

Conclusions

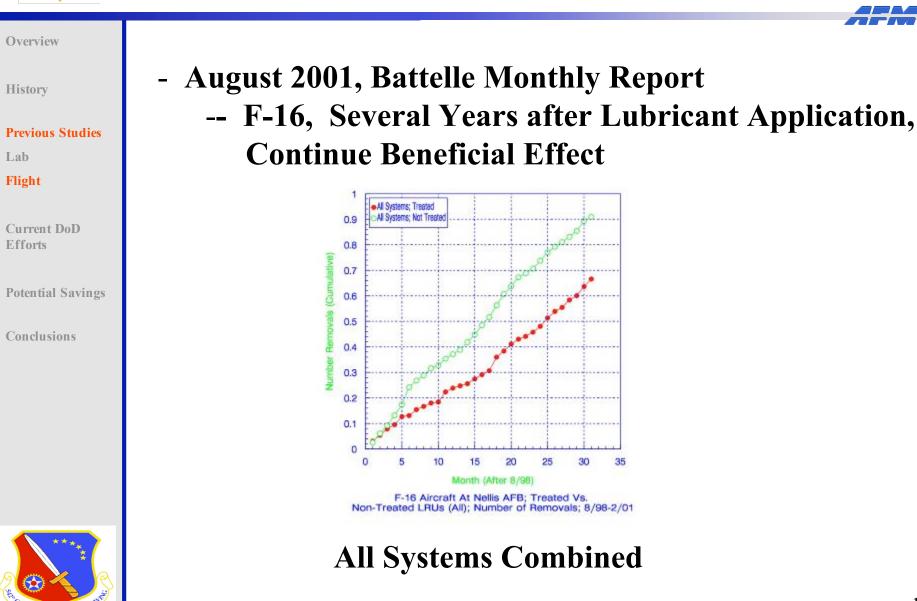

- All System LRUs (Avionics (Weapons), (Flight Control
- > Treated vs. Untreated
- Flight Line Applications
- > Removals/Flight Hr.
- Positive Results
- Positive Base Feedback
- No Implementation Problems
- Minimal Labor
- Large Potential Cost Saving From Reduced Removals And Exchange Cost Avoidance

F-16 Aircraft PPS (On Equipment) Removals/Flight Hour Base B With And Without Lube

Phase II - Example Of Potential Savings – Single Base

"PHASE II" F-16 FLIGHT TESTS, LRU TREATMENT

Overview History	• REMOVAL & LABOR SAVINGS FOR CP COMPARED TO NON-TEST ACFT	C TREATED A	CFT
Previous Studies		xI	MTBF
Lab Flight	• LANDING GEAR SYS REMOVALS:	54% FEWER	2.17
	• LANDING GEAR SYS MMH:	59% LOWER	
Current DoD Efforts	• FLIGHT CONTROL SYS REMOVALS:	55% FEWER	2.22
	• FLIGHT CONTROL SYS MMH:	41% LOWER	
Potential Savings	• FIRE CONTROL SYS REMOVALS	38% FEWER	1.61
Conclusions	• FIRE CONTROL SYS MMH	38% LOWER	
	 WEAPONS DELIVERY SYS REMOVALS 	64% FEWER	2.78
	• WEAPONS DELIVERY SYS MMH	48% LOWER	


INDEPENDENT STUDY SANDIA LABS TESTS OF MIL-L-87177

Overview	
History	• Dept. of Energy tasked Sandia National Laboratories to test
Previous Studies Lab	MIL-I-87177's ability to protect electrical connectors against corrosion. The Sandia Report was titled:
Flight Current DoD	— "MIL-L-87177 LUBRICANT BULLETPROOFS CONNECTORS AGAINST CHEMICAL AND FRETTING CORROSION"
Efforts Potential Savings	 GAO Report – GAO-03-753
Conclusions	 "For several decades the AF has conducted extensive studies on the corrosion of avionics connectors and what should be done about it. In the 1990s several studies recommended the use of specific CILPs that have the potential of ELIMINATING avionics connector corrosion on F-16 aircraft with an annual savings of \$500M/year"

"Phase III" - Update on Previous Work

E COMBAT SUSTAINMENT

"Phase III" - F-15 LRU's in Study

Overview		Arm 4
History Previous Studies	NOMENCLATURE WORK	X UNIT CODE
Lab Flight	Radar Analog Processor (039)	74FS0
Current DoD Efforts	Radar Low Voltage Power Supply (610)	74FH0
Potential Savings Conclusions	Radar Data Processor (081)	74FQ0
Conclusions	Programmable Digital Processor (42)	74FY0
	Radar Transmitter (011)	74FA0
	Radar Receiver (022)	74FC0
	Radar Frequency Oscillator (001)	74FJ0

Phase III – F-15s – 2002 -Kadena



Figure 4. Number of items a Removed for All Systems F15 Aircraft, Kadena

"Phase III - Depot Level LRU's in Study

N	NSN #	Nomenclature	System	Work Unit Code (WUC)
	5998-01-303-4375EW		ALQ155	
	5998-01-461-8083EW		ALQ155	
Studies	6625-01-302-4960KV	Part No: 8948667, master unit	A-10 turbine engine monitoring system	
	6625-01-221-3841KV	Part No: 091000-632, slave unit	A-10 turbine engine monitoring system	
	5945-01-008-0708BY		E3	
DoD	5985-01-297-2613AY			
	5826-00-917-8679			
l Savings	6130-01-056 65 <u>C</u> W			
ons	5865-01-408 78	Bu heterod Co bill SH	56лvi	76LE0
	5865-01-382 74	Din ion , Tin di en ant ver e FR, T	ALR-56M	76LH0, 76LJ0, 76LK0, 76L
	5865-01-463 47			76LF0
	(-005 config	Analysis Processor (AP)	ALR-56M	
	5865-01-463 1350EW			76LF0
	(-006 configuration)	Analysis Processor (AP)	ALR-56M	
	5865-01-364-8983EW			76LF0
	(-003 configuration)	Analysis Processor (AP)	ALR-56M	
****	1270-01-236-8438FX	Converter Programmer	F-15 EW	
	1270-01-236-3657FX	Converter Programmer	F-15 EW	
OT MNMENT ME				-

Current Efforts - Implementation Concepts

Overview	
History	 Engineering reviewed prior inhibitor studies
Previous Studies Lab	 Saw opportunity to reduce costly false component removals, ease maintainer burden
Flight Current DoD Efforts	 Presented prior study results/opportunity to ACC and maintainers - feedback positive
Potential Savings	 Incorporated inhibitor as part of an increased F-15 PDM Wiring Integrity Effort/Strategy
Conclusions	 Approved internally and presented to MRRB as low cost, low risk approach to improve mission readiness
	 Supported WR-ALC/LYE with F-15 field evaluation on feasibility for use at flight line level
	 Field level implementation strategy under way

F-15 has established program requiring use of CILs on electrical connectors during flightline depot maintenance by simply mandating the recommended use as stated in the Joint Service avionics tech manual...

Production Time & Costs Considerations for CPCs @ Depot

AFMS

SRU Calculations		
Action	Time/min	\$
Remove SRU from LRU	3	5.00
Prep SRU for Treatment	2	3.34
Treat SRU with Compound	d 0.1	0.17
Dry SRU	5	8.33
Replace SRU in LRU	3	5.00
Input Serial # Data to Trac	k 1	1.67
Total Additional Time & \$	s 14.10 m	\$23.51
Assumptions: Avg LS Repair hour	Shop RCC Rat	e of \$100 /per

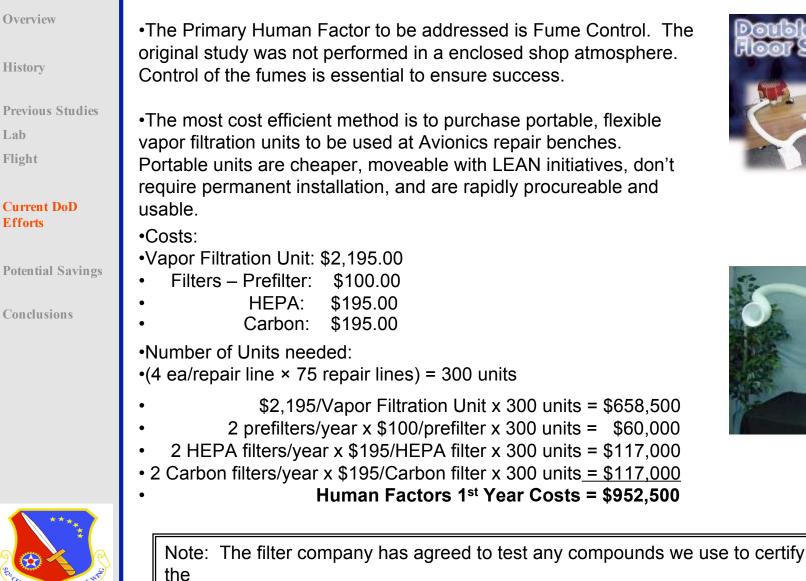
LRU Calculations		
Action	Time/min	\$
Treat 10 SRUs from LRU each	141.0	\$235.10
Prep LRU Connectors	2	3.34
Treat LRU Connectors	0.1	0.17
Dry LRU Connectors	5	8.33
Input Serial # Data to Track	1	1.67
Total Additional Time & \$s	148.20 m	\$248.61
Assumptions: Avg LS Repair Sho		0 /per hour
Avg 10 SRU's per L	RU	

Corrosion Control One Year Production Costs Estimates for all LS Managed Items

Total LS Avionics Items Repaired Last Year: 40,000 SRU's + 20,000 LRU's = 60,000 Total Items

\$ to Add Corrosion Preventative to all LS Assets:

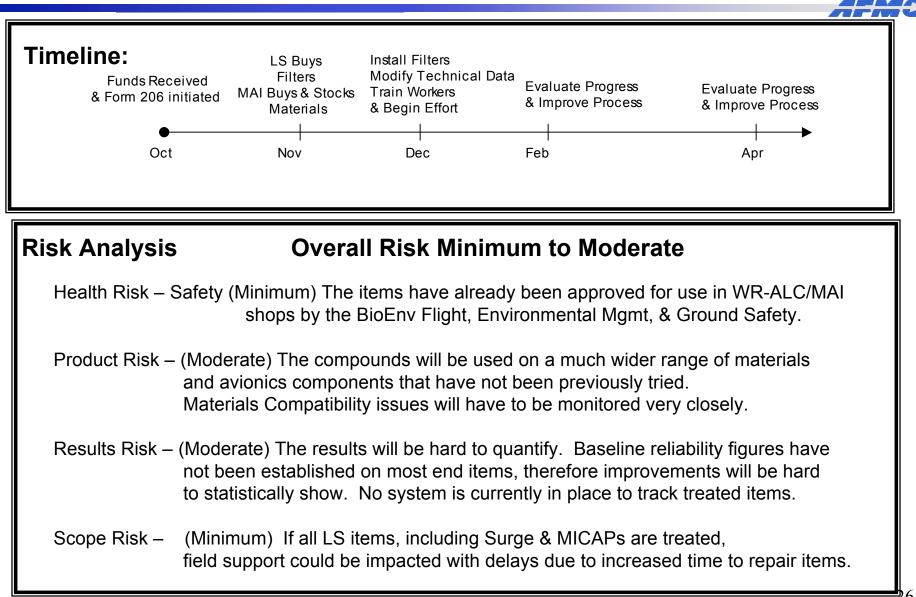
(40,000 × \$23.51/SRU) + (20,000 × \$248.61/LRU) = **\$5,912,600**


Money Management


1st year Effort: funded via one 206 from LS to MAI and work will be incorporated as Temporary Job Order

FY06 and beyond: Build requirement into Work Control Document and adjust repair rate accordingly

Human Factors Costs Considerations for CPCs @ Depot



Timeline and Risk Considerations for CPCs @ Depot

"Current Snapshot"

Overview	 USAF F-16 – not waiting on anybody.
History	 Funded program (OSD). ACC direction - implement at operating bases – non-impact
Previous Studies	 Issued interim T.O supplement for 87177A and revisions
Lab Flight	 WR-ALC - F-15 PDM line using 87177 Super Corr B
Current DoD Efforts	 WR-ALC C-5, C-17, C-130, U-2 reviewing F-15 and CIL/CPCs JSTARS implementing 87177 during programmed maintenance
Potential Savings	- 752 nd CSSS – FY07 MSD Engineering Project for Depot Spiral I
Conclusions	 NAVY P-3 Test program – Karl Martin's Feb 2005 white paper NAVAIR working to get engineering authority to step out with 87177A for avionics 87177A initiative in DoD Strategic Plan
	 ARMY Partnership with NAVAIR 87177A testing in work
	All Services Should - Leverage off trail that F-16 is blazing

By C.O.B today – how much savings did we forfeit - because we didn't apply

BENEFICIAL CPCs or ANY CPCs in the avionics complex or the PDM lines?

Cross Service Wide Use

	17	er	X71	(A)	747
U	W		V II	5	Y W

History

Previous Studies

Lab

Flight

Current DoD Efforts

Potential Savings

Conclusions

F-16 Fleet Estimated Operating and Cost Avoidance by Reducing / Eliminating Turn In of R-TOK's <u>\$ 500 Million +</u>

- Cross Service Implementation Very Easy
- Cross Service Implementation Very Low Cost
- Cross Service Implementation Potential is High

DoD Wide Impact - HUGE !!

Overview

History

Lab Flight

Current Efforts

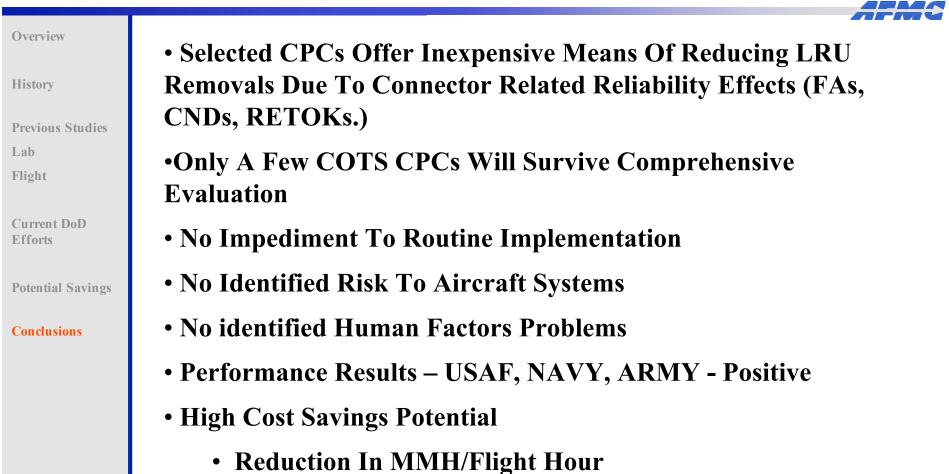
Potentia

Conclus

Previous Studies

Estimated \$\$ Cost Savings For F-16 Fleet By Exchange Cost Avoidance

Calculated exchange cost savings for LRU connector lubrication


Potential dollars at indicated percentage reductions for F-16 aircraft by exchange cost avoidance

		54 percent	55 percent	38 percent	64 percent	
			Sys V	WUC		
Command	Flight, hrs/yr	13 ^(a)	14	74	75	Dollar Summary by Command, units
ACC	91800	1.9	40.6	70.6	123.1	236.2
AFE	26460	0.5	9.9	17.9	15.3	42.8
AFR	15700	0.3	7.1	9.9	6.5	23.9
ANG	123000	2.5	52.1	66.2	71.1	191.9
PAF	40015	1.1	20.3	24.3	28.7	74.4
Dollars by Sys MM ^(b)	WUC;	6.3	130.1	188.0	244.7	569.2

Conclusions

Reduction In Removals and Exchange Costs

USE THESE CPCs on AVIONICS and ELECTRICAL CONNECTORS! CPCs (87177A and D-5026NS) SUPPORT THE WARFIGHTER!!!

Overview

History

Previous Studies

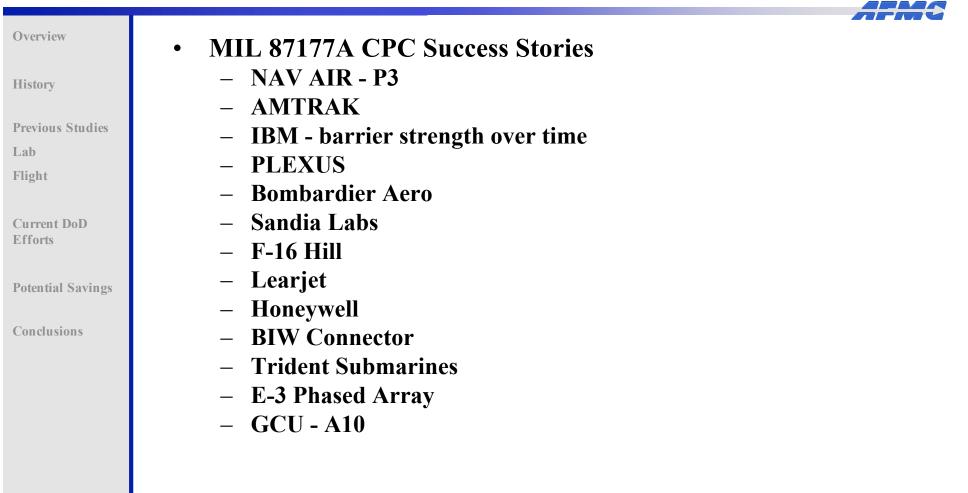
Lab

Flight

Current DoD Efforts

Potential Savings

Conclusions



THE RELIABILITY OF EVERY **U.S. WEAPON SYSTEM THAT USES ELECTRONIC PARTS MAY BE INCREASED BY USING THIS CORROSION INHIBITING LUBE IN THEIR CONNECTOR SETS** MANY OTHER USES FOR THIS **CPC COULD BE BENEFICIAL COST IS SHOWN AS PRIMARY BENEFIT BUT EFFECTIVENESS & SAFETY FOR OUR TROOPS IS EVEN MORE IMPORTANT**

Backups

WR-ALC Program Briefings

Overview -- Joint Service Review Committee (JSRC) - May 2001 History -- Joint Program Opportunities Board (JPOB) - July 2001 **Previous Studies** -- Asst Dep Commandant Marine Aviation (RADM Moffit) - September 2001 Lab -- Army, PEO/PM (MGen Bergantz) Redstone Arsenal, - September 2001 Flight -- Apache Maintenance Officer Conference – December 2001 **Current DoD** Efforts -- AFMC Engineering Council – January 2002 **Potential Savings** -- 93 Air Control Wing, Joint STARS – February 2002 Conclusions -- 2002 Air Force Corrosion Program Conference – March 2002 -- F-16 Cost Reduction IPT (CRIPT) – March 2002 -- 21st Digital Avionics System Conference – Oct 2002 -- Joint Technology Exchange Group – Nov 2002 -- WR-ALC Engineering Advisory Board – Sept and Oct 2005 -- Joint Group on Depot Maintenance -- Mar 2003

-- 9th Annual Aging Aircraft Conference – March 2006

33